Magnetic dipole moments of some spin- $\frac{1}{2}$ particles

©Mark Loewe, Austin, 15 August 2019

The 2018 CODATA recommended values^{1,2} of Planck's constant divided by 2π , the Bohr magneton, the nuclear magneton, electron, proton, neutron, muon, helion, and triton magnetic dipole moments, their ratios with respect to the Bohr magneton and the nuclear magneton, and their g factors³ are

```
\hbar = h/(2\pi) \equiv 1.0545718176461563812... \times 10^{-34} \text{ J s} \equiv 6.5821195695090656356... \times 10^{-16} \text{ eV s},
                        \begin{split} \mu_{\rm e} &= -9.2847647043(28) \times 10^{-24} \; {\rm J/T}, \\ \mu_{\rm p} &= 1.41060679736(60) \times 10^{-26} \; {\rm J/T}, \\ \end{split} \qquad \qquad \mu_{\rm \mu} &= -4.49044830(10) \times 10^{-26} \; {\rm J/T}, \\ \mu_{\rm h} &= -1.074617532(13) \times 10^{-26} \; {\rm J/T}, \end{split}
                        \mu_{\rm p} = 1.41060679736(60) \times 10^{-26} \,\text{J/T},
                        \mu_{\rm n} = -9.6623651(23) \times 10^{-27} \,\text{J/T},
                                                                                                        \mu_{\rm t} = 1.5046095202(30) \times 10^{-26} \, {\rm J/T},
   \mu_{\rm B} = e\hbar/(2m_{\rm e}) = 9.2740100783(28) \times 10^{-24} \,{\rm J/T} = 5.7883818060(17) \times 10^{-5} \,{\rm eV/T},
                  \mu_{\rm e}/\mu_{\rm B} = -1.00115965218128(18),
                                                                                                  \mu_{\mu}/\mu_{\rm B} = -4.84197047(11) \times 10^{-3}
                  \mu_{\rm D}/\mu_{\rm B} = 1.52103220230(46) \times 10^{-3}
                                                                                                  \mu_{\rm h}/\mu_{\rm B} = -1.158740958(14) \times 10^{-3}
                                                                                                                                                                                    (1)
                  \mu_{\rm n}/\mu_{\rm B} = -1.04187563(25) \times 10^{-3}
                                                                                                  \mu_{\rm t}/\mu_{\rm B} = 1.6223936651(32) \times 10^{-3}
   \mu_{\rm N} = e\hbar/(2m_{\rm p}) = 5.0507837461(15) \times 10^{-27} \,{\rm J/T} = 3.15245125844(96) \times 10^{-8} \,{\rm eV/T},
                  \mu_{\rm e}/\mu_{\rm N} = -1.83828197188(11) \times 10^3
                                                                                                  \mu_{\mu}/\mu_{\rm N} = -8.89059703(20),
                  \mu_{\rm D}/\mu_{\rm N} = 2.79284734463(82),
                                                                                                  \mu_{\rm h}/\mu_{\rm N} = -2.127625307(25),
                  \mu_{\rm n}/\mu_{\rm N} = -1.91304273(45),
                                                                                                  \mu_{\rm t}/\mu_{\rm N} = 2.9789624656(59),
g_{\rm e} = 4m_{\rm e}\mu_{\rm e}/(e\hbar) = -2.00231930436256(35), \qquad g_{\mu} = 4m_{\mu}\mu_{\mu}/(e\hbar) = -2.0023318418(13),
g_{\rm p} = 4m_{\rm p}\mu_{\rm p}/(e\hbar) = 5.5856946893(16),
                                                                               g_{\rm h} = 4m_{\rm p}\mu_{\rm h}/(e\hbar) = -4.255250615(50),
q_{\rm n} = 4m_{\rm p}\mu_{\rm n}/(e\hbar) = -3.82608545(90),
                                                                                q_{\rm t} = 4m_{\rm p}\mu_{\rm t}/(e\hbar) = 5.957924931(12).
```

Electrons, protons, neutrons, muons, helions, and tritons are spin- $\frac{1}{2}$ particles. Their intrinsic angular momentum (spin) operators \mathbf{S} are vector operators whose component operators $\mathbf{S} \cdot \mathbf{e}$, along every direction \mathbf{e} , only have the eigenvalues $\hbar/2$ and $-\hbar/2$. Their magnetic dipole moment operators are vector operators proportional to their spin operators but with different constants of proportionality, including different signs,

$$\mu_{\rm e} = \mu_{\rm e} 2\mathbf{S}/\hbar, \qquad \mu_{\rm \mu} = \mu_{\rm \mu} 2\mathbf{S}/\hbar,
\mu_{\rm p} = \mu_{\rm p} 2\mathbf{S}/\hbar, \qquad \mu_{\rm h} = \mu_{\rm h} 2\mathbf{S}/\hbar,
\mu_{\rm n} = \mu_{\rm n} 2\mathbf{S}/\hbar, \qquad \mu_{\rm t} = \mu_{\rm t} 2\mathbf{S}/\hbar.$$
(2)

The energy operator of such a magnetic dipole moment in a magnetic field $\mathbf{B} = B\mathbf{e}$ is

$$-\boldsymbol{\mu} \cdot \mathbf{B} = -B\boldsymbol{\mu} \cdot \mathbf{e} = -\mu B 2 \mathbf{S} \cdot \mathbf{e} / \hbar \tag{3}$$

and, since the eigenvalues of $\mathbf{S} \cdot \mathbf{e}$ are $\hbar/2$ and $-\hbar/2$, the respective eigenvalues of $-\boldsymbol{\mu} \cdot \mathbf{B}$ are $-\mu B$ and μB ; the respective eigenvalues are $[9.2847647043(28) \times 10^{-24} \text{ J/T}]B$ and $-[9.2847647043(28) \times 10^{-24} \text{ J/T}]B$ for an electron, $-[1.41060679736(60) \times 10^{-26} \text{ J/T}]B$ and $[1.41060679736(60) \times 10^{-26} \text{ J/T}]B$ for a proton, etc..

Except for the values of \hbar , these values are from the table of Fundamental Physical Constants at https://physics.nist.gov/cuu/Constants/Table/allascii.txt and are based on data through the end of 2018. Ten additional digits are given for the values of \hbar ; the exact definitions $h \equiv 6.62607015 \times 10^{-34}$ J s and eV $\equiv 1.602176634 \times 10^{-19}$ J, which took effect on 20 May 2019, may be used to compute further digits.

² Numbers in parentheses are one standard deviation uncertainties; for example, the electron magnetic dipole moment $\mu_{\rm e}$ is $-9.2847647043 \times 10^{-24}$ J/T with uncertainty $0.0000000028 \times 10^{-24}$ J/T.

 $^{^{3}}$ $g_{\rm n}, g_{\rm h}, {\rm and} g_{\rm t}$ use proton mass $m_{\rm p}, {\rm not}$ neutron mass $m_{\rm n}, {\rm helion}$ mass $m_{\rm h}, {\rm or}$ triton mass $m_{\rm t};$ the mass ratios are $m_{\rm n}/m_{\rm p} = 1.00137841931(49), m_{\rm h}/m_{\rm p} = 2.99315267167(13), {\rm and} m_{\rm t}/m_{\rm p} = 2.99371703414(15).$

⁴ A direction vector **e** has unit length, $\sqrt{\mathbf{e} \cdot \mathbf{e}} = 1$.

⁵ The eigenvalues $\hbar/2$ and $-\hbar/2$ of $\mathbf{S} \cdot \mathbf{e}$ do not involve the cosine of an angle between \mathbf{S} and \mathbf{e} .