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According to Segal’s chronometric cosmology (CC),1,2 the relation of redshift, z, and proper motion, µ, to the radius of
the Universe, R, speed of separation at the source (divided by c), β, and direction of motion, θ, is

R

c
2µ
√
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R
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v =

β sin θ

1− β cos θ
. (1)

Table 1 shows observed redshift, z, and observed proper motion, µ,3 for 24 sources1 on which Segal bases estimates of R,
β, and, for individual sources, θ. The 24 sources are ordered by values of 2µ

√
z. Segal reports the estimates

R = 160± 40 Mpc, β = 0.957. (2)

The fit below, to the same data, gives the estimates

R ' 504.564 . . . million lightyears = 154.700 . . . million parsecs, β ' 0.9577 . . . . (3)

The difference of 160 Mpc from 154.7 Mpc is well within Segal’s estimated uncertainty of (at most) 40 Mpc.

Table 1
R
c 2µ
√
z for Cumulative

Source z µ in mas
yr 2µ

√
z in mas

yr R = 504.564 . . . million lightyears frequency

3C84 0.0172 0.24 0.062951 . . . 0.153991 . . . 1/48
1951+498 0.466 0.07 0.095569 . . . 0.233782 . . . 3/48
3C263 0.652 0.06 0.096895 . . . 0.237026 . . . 5/48
3C245 1.029 0.11 0.223167 . . . 0.545911 . . . 7/48
0735+178 0.424 0.18 0.234415 . . . 0.573425 . . . 9/48
4C39.25 0.699 0.16 0.267539 . . . 0.654455 . . . 11/48
0850+581 1.322 0.12 0.275947 . . . 0.675023 . . . 13/48
0212+735 2.367 0.09 0.276931 . . . 0.677428 . . . 15/48
3C216 0.669 0.17 0.278094 . . . 0.680273 . . . 17/48
1150+812 1.25 0.13 0.290688 . . . 0.711082 . . . 19/48
OJ287 0.306 0.28 0.309776 . . . 0.757775 . . . 21/48
4C34.47 0.206 0.36 0.326788 . . . 0.799388 . . . 23/48
NRA0140 1.258 0.15 0.336481 . . . 0.823101 . . . 25/48
3C179 0.846 0.19 0.349517 . . . 0.854989 . . . 27/48
BLLac 0.0695 0.76 0.400715 . . . 0.980229 . . . 29/48
1642+690 0.751 0.34 0.589289 . . . 1.441520 . . . 31/48
2251+158 0.859 0.35 0.648775 . . . 1.587034 . . . 33/48
1928+738 0.302 0.6 0.659454 . . . 1.613156 . . . 35/48
3C279 0.538 0.5 0.733484 . . . 1.794249 . . . 37/48
3C345 0.595 0.48 0.740507 . . . 1.811429 . . . 39/48
3C273 0.158 1.20 0.953981 . . . 2.333627 . . . 41/48
3C120 0.033 2.66 0.966425 . . . 2.364070 . . . 43/48
3C395 0.635 0.64 1.019992 . . . 2.495103 . . . 45/48
CTA102 1.037 0.65 1.323831 . . . 3.238355 . . . 47/48

If R, like c, is assumed to be constant and if the probability density distribution for velocity of separation at the
source (divided by c) βββ is isotropic (does not depend on direction), then the n-th moment of Eq. (1) is
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where φ(β) is a weight function that may depend on the magnitude β of βββ. With integrals over θ evaluated in the
appendix, the first and second moments are
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1 “Apparent superluminal sources, comparative cosmology and the cosmic distance scale”, I. E. Segal, Monthly Notices
of the Royal Astronomical Society 242, 423-427 (1990), http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle query?
1990MNRAS.242..423S&defaultprint=YES&filetype=.pdf.

2 “APPARENT SUPERRELATIVISTIC VELOCITIES AND THE CHRONOMETRIC COSMOLOGY”, I. E. Segal,
The Astrophysical Journal 227, 15-17 (1979).

3 1 ≡ radian ≡ 180
π
◦ ≡ 180(60)

π
′ ≡ 180(60)2

π
′′ ≡ 180(60)21000

π mas ' 206264806 . . . milliarcseconds.
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If speed of separation at the source β is assumed to be constant, φ(β̂) = δ(β̂ − β), then Eqs. (4), (5), and (6) reduce to
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Equations (8) and (9) allow estimates of R and β to be obtained from the observed averages 〈2µ
√
z〉 and 〈(2µ
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2〉.
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Comparison with the table
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0.9570 1.210490 . . .
0.9576 1.211655 . . .
0.9577 1.211851 . . .
0.9578 1.212048 . . .
0.9580 1.212443 . . .

gives the estimate
β ' 0.9577 . . . . (13)
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with the table
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0.9570 0.682119 . . .
0.9576 0.684185 . . .
0.9577 0.684532 . . .
0.9578 0.684880 . . .
0.9580 0.685578 . . .

Comparison of Eq. (12′) is about three times more sensitive than comparison of Eq. (12) to changes in β in this range.
Segal compares Eq. (12′) but rounds to the estimate β = 0.957 and away from the closer estimate β = 0.958. Segal also
estimates that the “overall effective uncertainty in β on the basis of the CC and the sample of Cohen et al. appears to
be comparable to a standard deviation of the order of 2 per cent.”

Use of Eqs. (10) and β = 0.9577 in Eq. (8) gives the following rough estimate for the radius of the Universe:
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= 504.564 . . . million lightyears = 154.700 . . . million parsecs.

(14)



I do not know how Segal obtained the higher estimate R = 160 Mpc. Segal states that “A first-order perturbative
stochastic analysis indicates that the standard error of this estimate is at most 40 Mpc.” The difference of R = 160 Mpc
from R = 154.7 Mpc is well within 40 Mpc.

Segal mentions that the hypothesis that the values of β are substantially uniform is “the simplest a priori hypothesis”,
“is moreover suggested by the appearance of a common physical mechanism underlying most superluminal motions, and
is in any event subject to an a posteriori statistical test.” The a posteriori statistical test compares the cumulative
frequency distribution of R

c 2µ
√
z for the observed z and µ and constant R from Eq. (14) with the cumulative probability

distribution of β sin θ
1−β cos θ predicted by isotropy of βββ and constant β from Eq. (13).
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Table 1 shows these values along with their observed cumulative frequencies. The cumulative frequencies are the central
points of 24 bins of width 1/24 from 0 to 1, one for each source. This cumulative frequency distribution is plotted as dots
in Figure 1.

For constant β, the maximum value of β sin θ
1−β cos θ is β/

√
1− β2, which occurs when cos θ = β. The value of β sin θ

1−β cos θ

declines as θ varies in either direction away from θ = arccosβ. The cumulative probability that β sin θ
1−β cos θ is less than some

value x is
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β
(
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where θ1 and θ2 are solutions of
β sin θj

1−β cos θj
= x. For β = 0.9577, this cumulative probability distribution is plotted as a

solid curve in Figure 1 and gives probability 1 when β sin θ
1−β cos θ takes its maximum value

β/
√

1− β2 = 0.9577/
√

1− (0.9577)2 ' 3.328022 . . . . (17)
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Figure 1. Observed cumulative frequency versus R
c 2µ
√
z for R ' 504.564 . . . million lightyears from Table 1 (dots) and

theoretical cumulative probability of Eq. (16) versus x for β = 0.9577 (solid curve).



Although Segal uses slightly different values of R and β, his comment, “The fit appears quite acceptable”, still applies.
[Note that the value β ' 0.9577 . . . is from Eq. (13), not from a separate fit of Eq. (16) to the dots.] Segal also states
“that allowance for the fitting of two parameters from the data would be unlikely to alter the apparent acceptability.”
Deviations might be due to ordinary statistical variation of the directions of motion, θ, and to speeds of separation at the
source, β, that are only approximately constant.

Segal states that “For a test that goes beyond the present phenomenological study, as well as for more precise
estimates of the important astrophysical parameters estimated here, a larger sample that is objectively delineated and
systematically observed would be extremely valuable.” Such a larger sample of observed right ascension, declination,
redshift, and proper motion data might allow estimation of parameters in models that describe deviations of the shape
of the spatial Universe from a 3-sphere of constant radius R and volume 2π2R3. Can such a larger sample be obtained
from existing surveys?

Segal’s article (referenced in Footnote 1) contains several errors, which might have caused some reluctance to accept
its rough estimates and suggestions for further study. On Page 423, v = v(β, θ) = β sin θ (1−β cos θ) should read

v = v(β, θ) = β sin θ/(1−β cos θ). On Page 423, 〈v〉 = (1/2π)
−1
[
1−
(
1−β2

)1/2]
should read 〈v〉 = π/(2β)

[
1−
(
1−β2

)1/2]
.

On Page 424, the column of Table 1 labeled vmax lists rounded values of β/
√

1− β, not rounded values of β/
√

1− β2.
On Page 425, the factor 63.27 should read 63.24. On Page 425, within the integrand in Eq. (2) and in a later equation
on Page 425, the factor of cos θ should read sin θ. On Page 426, in Table 2, for source 3C395, the value of v should be
more than 2.5, not 1.60.

Appendix. Two integrals over θ
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the first equality uses u = 1− β cos θ.
An integral table provides the integral4∫ π
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The substitutions x = θ, p = 1, and q = −β and multiplication by β
2 give the same result that I derived on 22 February
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(A3)

The first equality uses the fact that the integrand is an even function of θ. The second equality uses z = eiθ = cos θ+i sin θ.
The fifth equality uses the residue theorem and the fact that, for 0 < β < 1, the integrand is analytic within the unit

circle except for a second order pole at z = 0 and a first order pole at z = 1
β
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)

. Algebra of the later equalities

simplifies by use of
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4 This is Equation 3.644-4 on Page 402 of I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,
Seventh Edition, Alan Jeffrey and Daniel Zwillinger, Editors, Elsevier Academic Press, Burlington, Massachusetts 2007.


